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Abstract. In this paper the effects of viscous boundary layers and mean flow structures on the heat transfer
of a flow in a slender cylindrical cell are analysed using the direct numerical simulation of the Navier–
Stokes equations with the Boussinesq approximation. Ideal flows are produced by suppressing the viscous
boundary layers and by artificially enforcing the flow axisymmetry with the aim of checking some proposed
explanations for the Nusselt number dependence on the Rayleigh number. The emerging picture suggests
that, in this slender geometry,the presence of the viscous boundary layers does not have appreciable impact
on the slope of the Nu vs. Ra relation while a transition of the mean flow is most likely the reason for the
slope increase observed around Ra = 2× 10 9.

PACS. 47.27.Te Convection turbulent flows – 47.32.-y Fluid flow buoyant – 44.25.+f Heat transfer
convective

1 Introduction

One of the main advantages of numerical simulation is the
possibility to perform ideal experiments with the aim of
verifying conjectures or stressing the hypotheses of a the-
ory. Indeed, in thermal convection a numerical simulation
is always an ideal experiment owing to the precise assign-
ment of the temperature boundary conditions, the possi-
bility of having plates with infinite heat capacity, the ab-
sence of conductive side–wall effects and the unconditional
validity of the Boussinesq approximation that in labora-
tory experiments might be cause of concern ([1–5]). Nev-
ertheless, in this context, by ideal experiments we mean
flows that can not be realized, even in an approximate
way, by a real experimental apparatus. In particular we
will consider the flow developing in a cylindrical cell of
aspect ratio (diameter over height) Γ = 1/2 heated from
below and cooled from above with an adiabatic side wall
and with free–slip boundaries, thus preventing the for-
mation of viscous boundary layers. The results will be
then compared with previous and new simulations with
the same temperature boundary conditions but with or-
dinary no–slip walls. Another ideal experiment consists of
simulations in which the flow is forced to remain axisym-
metric; this strongly alters the structure of the mean flow
with respect to the full three–dimensional configuration
thus allowing the analysis of the effect of coherent large
scales on the heat transfer.

The motivation for this study comes from several pa-
pers in which the roles of mean flow and viscous boundary
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layers (and the kinetic energy therein dissipated) are con-
sidered for the heat transfer as function of the maximum
temperature difference in the system. These parameters
are expressed in non dimensional form by the Nusselt Nu
and Rayleigh Ra numbers (see next section for the defini-
tions) which can be considered, respectively, as response
and input of the system. The seminal paper by Castaing
et al. [6] showed the 2/7 power law in the Nu vs. Ra rela-
tion for gaseous helium and, even if it is now clear that a
simple power law does not fit the whole curve, several the-
ories have been proposed for the explanation of the scaling.
Shraiman and Siggia [7], for example, were able to derive
the correct power law by assuming a thermal boundary
layer contained within the viscous one and a linear veloc-
ity profile induced by the latter; it can be shown that this
is equivalent to assume that the most of the kinetic energy
dissipation of the system occurs in the viscous boundary
layers.

The scenario was complicated by recent experiments
in gaseous helium ([3,8–10]) in which the Nu vs. Ra re-
lation showed a transition above Ra ' 1011 toward a
steeper power law, perhaps indicating the occurrence of
the Kraichnan [11] asymptotic regime Nu ∼ Ra1/2. Ap-
parently, all this complex dynamics is unified under the
theory by Grossmann and Lohse [12,13] which classifies
the flows in the Ra–Pr phase space according to the dom-
inant contribution (bulk or boundary layer) to the ki-
netic energy and temperature variance dissipation rates;
the theory is also successful in predicting the Nu vs. Pr
dependence and the Reynolds number variation with Ra
and Pr (Pr is the Prandtl number defined in the next
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section). The recent paper by Verzicco and Camussi [14]
has however shown that in a cylindrical cell of aspect ra-
tio Γ = 1/2 at Pr = 0.7 and 2 × 106 ≤ Ra ≤ 2 × 1011

the direct computation of the boundary layers thickness
and their contribution to the total dissipation rates yields
a picture which does not agree with that given by the
Grossmann and Lohse [13] phase diagram. It was then
shown that in the slender geometry the mean flow be-
haved in a peculiar way and it was conjectured that that
could be the cause for the disagreement with the theory.

The purpose of this study is to investigate in more
detail the above points and, in particular, the role of the
viscous boundary layers and of the mean flow on the Nu
vs. Ra relation.

2 Numerical set–up

The flow investigated in this paper is that developing in
a cylindrical cell of aspect ratio Γ = 1/2 heated from be-
low and cooled from above with an adiabatic side wall.
All the cell surfaces are no–slip; in a set of numerical ex-
periments, however, free–slip boundary conditions have
been imposed in order to prevent the formation of vis-
cous boundary layers and to investigate their effects on
the flow dynamics. The former configuration (with the
no–slip boundaries) replicates the set–up of recent stud-
ies ([9,14–17]) that performed experiments and numerical
simulations using gaseous helium close to the critical point
as working fluid. For this problem the controlling parame-
ters are Ra = gα∆h3/(νk) and Pr = ν/k where ∆ and h
denote the temperature difference between the plates and
their separation distance, respectively, and g is the accel-
eration of gravity. The fluid properties are retrieved by the
parameters α, ν and k which are, respectively, the ther-
mal expansion coefficient, the kinematic viscosity and the
thermal diffusivity. The heat transfer between the plates
is expressed in nondimensional form by Nu = Qh/(λ∆)
with Q the heat per unit surface transferred between the
two plates and λ the thermal conductivity. The flow is
solved by numerically integrating the three–dimensional
unsteady Navier–Stokes equations with the Boussinesq ap-
proximation. The equations have been written in a cylin-
drical coordinate frame and discretized on a staggered
mesh by central second–order accurate finite–difference
approximations; the resulting discretized system is solved
by a fractional–step procedure with the elliptic equation
inverted using trigonometric expansions in the azimuthal
direction and a direct solver for the other two directions.
The time advancement of the solution is obtained by a hy-
brid low–storage third–order Runge–Kutta scheme. The
numerical method is the same as that described in [14]
(hereafter referred to as VC03) where further details of
the numerical procedure can be found.

Thanks to the data accessibility provided by the direct
numerical simulation three–dimensional velocity and tem-
perature fields have been employed for the computation of
kinetic energy and temperature variance dissipation rates
ε =

√
Pr/Ra〈|∇u|2〉 and N = 1/

√
RaPr〈|∇θ|2〉 through
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Fig. 1. Sketch of the boundary layer/bulk region separation for
kinetic energy dissipation rate ε (a)) and temperature variance
dissipation rate N (b)).

the spatial gradients of velocity u and temperature θ. As
suggested by Grossmann and Lohse [12], for the analysis
of the results it will be useful to separate the contribu-
tions to ε and N coming from boundary layer (εbl, Nbl)
and bulk (εbu, Nbu) flow regions; in order to avoid confu-
sion in Figure 1 a sketch is given showing the different
regions. λv and λlw are, respectively, the viscous bound-
ary layer thicknesses on the plates and on the side wall
(the former being thinner than the latter) while λθ is the
thickness of the thermal boundary layer on the plates. It
is worth noting that being the lateral wall thermally adi-
abatic and no–slip it will contribute to εbl and not to Nbl

which, instead, is generated only in the plate region.
The reference data consist of 6 simulations at Pr = 0.7

and Ra in the range 2× 106− 2× 1011 reported in VC03;
those simulations have been validated with laboratory ex-
periments and verified by grid refinements checks. We have
used therefore those data as benchmarks to assess the
quality of the present new simulations. Three sets of nu-
merical experiments have been run: in the first the Prandtl
number was increased to Pr = 4 to mimic the behaviour
of water at T = 45 ◦C and the Rayleigh number was var-
ied in the range 2 × 106 ≤ Ra ≤ 2 × 1010. The second
set is identical to the first but for the velocity bound-
ary conditions which are free–slip on all the cell surfaces.
This prevents the formation of viscous boundary layers
and their influence on the flow dynamics can be studied.
The last set of experiments consists of axisymmetric sim-
ulations at Pr = 4 the Rayleigh number in the range
2 × 106 ≤ Ra ≤ 2 × 1011 and ordinary no–slip velocity
boundary conditions; these simulations allowed to investi-
gate the effect of the mean flow structure, and in particular
of the single recirculation completely filling the cell, on the
heat transfer.

Using the results of VC03 it was verified that for every
three–dimensional simulation the mesh size in the bulk
was of the same order as the the Kolmogorov scale and
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Fig. 2. a) Nusselt vs. Rayleigh: × Pr = 0.7 (data from VC03); ◦ Pr = 4, Pr = 4 free–slip walls; • Pr = 4 axisymmetric flow.
b) The same as a) for the compensated Nusselt number; y = x0.015 power law (Nu ∼ Ra0.3), fit of equation (1) at
Pr = 0.7 fit of equation (1) at Pr = 4.0.

that viscous and thermal boundary layers at the solid sur-
faces were adequately resolved (a minimum of 5 points in-
side the thermal layer with the first point within 1/8 of
the layer thickness). This resulted in a non–uniform mesh
in the radial and vertical directions with grids ranging
from 65 × 49 × 129 up to 129 × 97 × 385, respectively,
in the azimuthal radial and vertical directions. The sim-
ulation at Pr = 4 and Ra = 2 × 1010 with free–slip
walls is the only exception to the mentioned resolution
requirements; in fact we will see in Section 3.2 that the
main effect of the viscous layer suppression is a decrease
of the thermal boundary layer thickness by almost a fac-
tor 2. As a consequence we found that only three nodes
were within the thermal boundary layer and, although
this resolution is considered adequate by Grötzbach [18],
we would regard the results of this simulation only as
indicative rather than quantitatively reliable. In the set
of axisymmetric simulations the Rayleigh number was in-
creased up to Ra = 2 × 1011 and therefore the grid was
refined to 129 × 513 points in the radial and vertical di-
rections. An extra simulation was run with a more refined
grid (193× 769) to check the results of the previous run.

As a further check, following VC03, the Nusselt num-
ber was computed in two ways: Nu = 1 +

√
RaPr〈uxθ〉,

with the angular brackets indicating average over time
and over the whole fluid layer, and Nu = ∂θ/∂x|w where
|w indicates that the derivative is evaluated at the wall
and the overbar implies an average in time and over the
plate surface. The two definitions converge to the same
value provided the spatial resolution is adequate both in
the bulk and in the wall region and that the evolution is
long enough to average out the small mean temperature
fluctuations (VC03).

All the simulations have been run for a long enough
time to compute reliable statistics for the heat transfer
and other second order moments (like r.m.s profiles of ve-
locity and temperature); also in this case the estimates
from VC03 have been used and these required a total simu-
lation time Ttot from 100TL to 165TL (with TL = 2h/U the

large–eddy–turnover time, and U =
√

gα∆h the free–fall
velocity) for the Rayleigh number 2×106 ≤ Ra ≤ 2×1010.

3 Results

The main result which will drive the discussion of all the
numerical experiments is that reported in Figure 2 show-
ing the increase of the Nusselt number with the Rayleigh
number for different flow conditions.

Several facts are evident from Figure 2: i) all the three
dimensional flows show a change in the slope of the Nu vs.
Ra curve which in VC03 was found to be due to a modifi-
cation of the mean flow structure. ii) The experiments at
Pr = 0.7 and Pr = 4 show the same values of the Nusselt
number and the same location for the slope change thus
implying that the present Prandtl number variation does
not have any appreciable effect on the non dimensional
heat transfer. iii) The flow with the free–slip boundary
conditions, in contrast, has a heat transfer which is about
twice bigger than that of the analogous flow with no–slip
velocity boundary conditions; nevertheless both the power
law dependence on Ra and the position of the slope change
are the same. iv) Finally the axisymmetric flow has the
smallest values of the Nusselt number and, in the explored
range of Rayleigh numbers, is characterized by a constant
slope which is to a good approximation Nu ∼ Ra0.3.

The successives sections will investigate the different
flow features to justify the above observations.

3.1 Prandtl number effect

As anticipated by the results of Figure 2 the Nusselt num-
ber at Pr = 0.7 and Pr = 4 is essentially the same
and this result agrees with those in [10] who experimen-
tally studied the same flow in a range of Prandtl numbers
0.7 ≤ Pr ≤ 21. The same independence of the Nusselt
number on the Prandtl number was observed by Ahlers
and Xu [19] in the range 4 ≤ Pr ≤ 34; in particular
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within one decade of Pr their variation of the Nusselt
number was only about 2% and the present computations
at Pr = 0.7 and Pr = 4 confirm the negligible dependence
of the Nusselt number on the Prandtl number. Indeed, on
a much wider Prandtl number range (4 ≤ Pr ≤ 1353)
Xia, Lam and Zhou [20] observed a 20% decrease of the
Nusselt number in a cylindrical cell of unity aspect ratio
and their results were fully confirmed by the Grossmann
and Lohse [13] model.

Ahlers and Xu [19] used the prediction by Grossmann
and Lohse [12] for Pr ≥ 2 to fit their data over the range
4 ≤ Pr ≤ 34. We have performed a similar fit but, in the
present case, we have used the updated and more realistic
model by Grossmann and Lohse [13] where the influence
of all regions, and not only two, is considered. This theory
yields at the same time Nu and Re by

NuRa

Pr2
= c1

Re2

g(
√

Rec/Re)
+ c2Re3, (1)

and

Nu = c3

√
RePr
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f

[
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√
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(√
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)]}1/2
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[
Nu

2
√
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g

(√
Rec

Re

)]
.

where, it results f(x) = (1 + xn)−1/n and g(x) = x(1 +
xn)−1/n with n = 4 to characterize the ‘sharpness’ of the
transition from one region to another. In (1) the coef-
ficients c1, c2, c3, c4 and Rec are to be determined by a
non linear fit and, using the data of the three–dimensional
numerical simulations with no–slip walls at Pr = 4 and
Pr = 0.7 we have obtained: c1 = 92.95, c2 = 0.843,
c3 = 0.855, c4 = 0.01364 and Rec = 0.632. These coef-
ficients have been computed using the same Levenberg–
Marquardt method as Grossmann and Lohse [13] and it
can be seen from Figure 2 that the agreement with the nu-
merical results is excellent for both values of the Prandtl
number. Such a good agreement, however, should not be
surprising since the coefficients are obtained from the nu-
merically computed Nusselt numbers; the result of Fig-
ure 2b, therefore, should be considered just as a check for
the correctness of the fitting procedure. Nevertheless, the
second result of the model is the Reynolds number and,
since it is not used as input for the calculation of the coeffi-
cients ci and Rec, this is the real prediction of the theory.
The results of Figure 3 show that the prediction of the
model is very good, either for the slope of the Re vs. Ra
curves (Re ∼ Ra0.51) and for the Prandtl number depen-
dence1. Nevertheless we wish to stress that in Figure 3 the

1 It is worth noting that the fit for the Reynolds number was
determined using the rescaling of Grossmann and Lohse [21]
who benefitted from more accurate Reynolds number measure-
ments with respect to Grossmann and Lohse [13]; this resulted
in a Reynolds number increase by a factor 1.92 (= 0.48/0.25)
which considerably improved the prediction.

Fig. 3. a) Reynolds vs. Rayleigh: × Pr = 0.7 (data from
VC03); ◦ Pr = 4; fit of equation (1) at Pr = 0.7;

fit of equation (1) at Pr = 4.0.

Reynolds number has been computed using the fluctuating
velocity u′ in the bulk; different values, about 30% bigger
but with the same dependence on Ra, would be obtained
if the velocity fluctuation were evaluated in the boundary
layer regions (see Fig. 14 of VC03). On the other hand,
if the Reynolds number were computed using the mean
large scale velocity, not only the value but also the depen-
dence on Ra would be missed by the model (see Fig. 12 of
VC03). This implies that the prediction of Figure 3 is only
a partial success of the model since one of its fundamental
ingredients is the presence of a constant wind sweeping the
plates; this wind generates laminar viscous boundary lay-
ers of the Blasius type at the solid surfaces from which the
kinetic energy dissipation rate is estimated. The Reynolds
number, therefore, in this context should be defined using
the wind velocity U and not the velocity fluctuations u′
as in Figure 3.

The essence of the theory by Grossmann and Lohse [12]
is to distinguish flow regimes in the Ra–Pr plane depend-
ing on the viscous and thermal boundary layer relative
thickness and on the dominant contribution (either bulk
or boundary layer) to the total kinetic energy ε and tem-
perature variance N dissipation rates. We have therefore
computed these quantities in order to check if the present
simulations are correctly placed in the Grossmann and
Lohse Ra–Pr phase diagram (see Fig. 1 of [21]) which,
being aspect–ratio dependent has been recomputed for
Γ = 1/2 flows. In Figure 4 we show the boundary layer
thicknesses evaluated from the position of the rms peaks
of the vertical profiles of temperature and horizontal ve-
locity at Pr = 4 (see Fig. 8 of Sect. 3.2); similar results at
Pr = 0.7 are reported from VC03 for comparison. It can
be seen that it results in both cases λθ < λu and λθ is es-
sentially the same at Pr = 0.7 and Pr = 4. In contrast λu

is always thicker at Pr = 4 than at Pr = 0.7 owing to the
Reynolds number that decreases as the Prandtl number
increases. Figure 5 shows the relative contribution of the
bulk and the boundary layer regions to the total ε and N
showing that ε is first dominated by the boundary layer



R. Verzicco: Boundary layer and mean flow effects in convective turbulence 137

Fig. 4. Boundary layer thicknesses as function of the Rayleigh
number: viscous layer, Pr = 0.7; ◦ thermal layer Pr = 0.7;

viscous layer, Pr = 4, × thermal layer Pr = 4, • thermal
layer Pr = 4 with ‘free–slip’ boundaries.

and then by the bulk with a transition around Ra = 108

while N is always dominated by the boundary layer re-
gions. Similar results concerning λu and λθ were obtained
by VC03 at Pr = 0.7 with the only difference that the
cross–over for ε was observed at Ra ' 109. According to
the results of Figures 4 and 5 both series of simulations
at Pr = 0.7 and Pr = 4 should be classified as Iu and
IIu regimes while the Pr and Ra values of the simulations
would place them in Iu, IIIu and eventually IVu regions
(see Fig. 6). We wish to stress that all regions IV pertain
to those flows in which the main contribution to the tem-
perature variance dissipation rate N comes from the bulk
and they are asymptotic with Ra. In contrast, Figures 4
and 5 suggest that, in this small aspect ratio–cell, the flow
eventually goes into the region IIu, which in Figure 6 is
absent.

Further analysis is necessary to understand the reason
for the mismatch between the good quantitative predic-
tions for Nu and Re of the Grossmann and Lohse [13]
model and the ‘wrong’ positioning of the simulations in
the regions of the Ra–Pr phase diagram. Looking at the
present results and those of VC03 we can only conjecture
that the small value of the aspect–ratio Γ = 1/2 produces
a peculiar evolution of the mean flow which has not been
observed in larger aspect–ratio geometries. In fact, the de-
crease of λu with Ra in Figure 4 shows at Pr = 0.7 and
Pr = 4 a ‘knee’ around Ra = 109 which VC03 identified
as the footprint of the mean flow transition. In particular
it was observed that for Ra ≤ 109 the mean flow con-
sisted of axisymmetric toroidal vortices attached to the
horizontal plates and a weak recirculation completely fill-
ing the cell. At Ra > 109 the latter structure evolved
into two counter–rotating asymmetric unity–aspect–ratio
rolls while the toroidal vortices reduced their intensity;
this transition was shown to have effects, in addition to
the heat transfer, also on the boundary layers dynamics
and therefore their contributions to the total kinetic en-
ergy and temperature variance dissipation rates.

These results mainly confirm the findings of Roche
et al. [10] and, keeping in mind the mean flow transition,
an interesting result of that paper is the observed bimodal-
ity of the Nusselt number in the region 2 × 107 < Ra <
2 × 1010. In fact the scatter of the transitional Rayleigh
number might be due to the anticipated or delayed on-
set of the mean flow transition induced by constructive
details of the experimental apparatus (finite conductivity
and heat capacity of the walls). The horizontality of the
cell is another experimental detail that, although special
care is taken in the cell positioning, can not be fully ruled
out (P. Roche, personal communication).

3.2 Flow with free–slip walls

In the previous section we observed that the viscous
boundary layer thickening produced by a Prandtl num-
ber increase from Pr = 0.7 to Pr = 4 neither affects the
Nusselt number nor the flow dynamics. The main reason
for running the set of numerical experiments with free–
slip walls is therefore to prevent the formation of viscous
boundary layers and, by comparison with the flows de-
scribed in the previous section, to analyze the impact of
their absence on the flow dynamics. From Figure 2 it is
immediately evident that the slope of the Nusselt number
vs. Rayleigh number and the location of the slope change
are the same with and without viscous boundary layers.
In other words a model from which the power law is pre-
dicted should not depend on the wall velocity profile at
least up to Ra = 2 × 1011 and for this small aspect ratio
geometry. This suggests that the explanations for the Nu
vs. Ra power law relying on the velocity distribution in-
side the boundary layer ([7]) should be ruled out. In fact,
Shraiman and Siggia [7] directly relate the Nusselt number
to the wall normal velocity gradient du/dn produced by
the mean wind through the relation Nu ∼ (du/dn)1/3. In
the present case, however, du/dn is zero owing to the ab-
sence of viscous boundary layers and the Nusselt number
should also decrease to zero according to the above pre-
diction. In contrast, the results of Figure 2 change in the
opposite direction with an increasing Nusselt number for
a wall shear stress decreasing to zero. Indeed, an experi-
mental confirmation of this result is given by Solomon and
Gollub [22] that artificially enhanced the shear of the bot-
tom boundary layer without changing the Nu behaviour.

Other explanations of the Nu vs. Ra relationship
based on the boundary layers transition from laminar to
turbulent regime ([9]) can not be refuted by the above
arguments since this transition occurs beyond Ra ≈ 1012

(Ra ≥ 1014 at Pr = 0.7 according to [21]) and this is
presently out of reach for the direct numerical simulation.
Nevertheless if the slope increase of Figure 2 is considered
as an indication for the eventual occurrence of the ultimate
regime then also the explanations based on the boundary
layer transition should be reconsidered since the slope in-
crease is observed also when viscous boundary layers are
absent.

The most evident difference between the flows with
different velocity boundary conditions is the magnitude of
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Fig. 5. Percentage of the kinetic energy dissipation a) and temperature variance dissipation rates b) in the bulk and in the
boundary layers as function of the Rayleigh number at Pr = 4; 4 bulk contribution, boundary layer contribution.

Fig. 6. Grossmann and Lohse phase diagram recomputed for
the ci and Rec obtained from equation (1) fitted to the present
numerical simulations. The symbols indicate the (Ra,Pr)–
coordinates of the numerical simulations.

the Nusselt number that, in the free–slip case, is about
twice bigger than in the no–slip case. Looking at Figure 7
it is observed that the flow topology is essentially the same
in both cases with the averaged velocities in the free–slip
case that only increase by 10–15% with respect to the no–
slip case. The peak values of the radial velocity, however,
are now located at the plate surfaces where the temper-
ature gradients are the highest; this provides an efficient
mechanism for the ‘sweeping’ of these surfaces from fluid
particles which have been heated (or cooled) by pure con-
duction. The fluctuations of Figure 8, on the other hand,
show a dramatic change in the free–slip case, especially for
the horizontal velocity in the wall region which increase
by a factor in between 2 and 3. The temperature fluctu-
ations also increase and move their peaks closer to the
plates were the wind fluctuations are the highest. These
phenomena both contribute to increasing the correlation
〈θ′u′〉 which is the convective heat transfer.

The mean flow far from the plates also has an active
role in the heat transport through the convection of 〈θ′u′〉

via coherent ascending (descending) hot (cold) currents.
In other words, the correlation 〈θ′u′〉 drains (delivers) the
heat from (to) the hot (cold) plate while the large–scale
recirculations, in addition to producing the winds sweep-
ing the plates, behave like flywheels which take care of the
transfer between the plates.

Also for the above phenomena Solomon and Gollub
[23] have given experimental evidence: in particular they
artificially enhanced the strength of the mean recirculation
producing an increase of heat transfer up to 50% with re-
spect to the unperturbed value. It should be mentioned,
however, that they also observed a decrease in the expo-
nent of the Nu vs. Ra power law, even if, owing to the
particular experimental technique adopted for the recir-
culation enhancement, they altered also the mean flow
structure.

Before concluding this section we wish to stress that,
although by using free–slip surface viscous boundary lay-
ers are suppressed, according to Figure 8 still there are
strong gradients of horizontal velocity fluctuations at the
plates; this implies that some viscous dissipation could
yet occur at the plates even if, as shown in Figure 8e, at
Ra = 2 × 1010 this secondary contribution becomes com-
parable to that of the no–slip case.

3.3 Axisymmetric flow

The conclusion of the previous section seems to disagree
with the paper by Ciliberto et al. [24] that, using ver-
tical screens attached to the horizontal plates, strongly
modified the mean flow without noticing appreciable vari-
ations of the Nusselt number. In that case, however, the
rectangular shape of the cell and the larger aspect ra-
tios (1 ≤ Γ ≤ 6.5) did not allow a direct comparison
with the present results. In addition, from that paper
it was not possible to understand if the mean flow re-
oriented itself in such a way to flow parallel to the vertical
screens and therefore to establish a configuration similar
to the unperturbed one. We note, in addition, that a di-
rect comparison of the results of the previous section with
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a) b) c) d)

Fig. 7. Mean radial velocity (a) and c)) and vertical velocity (b) and d)) for the flow at Ra = 2× 1010 and Pr = 4. Panels a)
and b) are the simulation with free–slip velocity boundary condition, panels c) and d) standard no–slip condition. ∆u = ±0.04

for positive for negative values. The data have been averaged over the azimuthal direction and in time.

Fig. 8. rms vertical profiles (averaged over azimuthal, radial direction and time) of temperature (a) and d)), horizontal velocity
(b) and e)) and vertical velocity (c) and f)); Pr = 4, upper panels Ra = 2 × 107; lower panels Ra = 2 × 1010. no–slip
velocity boundary conditions, free–slip. The insets in panels a) and d) are zooms of the lower thermal boundary layer
region. The symbols on the lines evidence the gridpoint positions.

the paper by Ciliberto et al. [24] is not strictly correct ow-
ing to the different boundary conditions of the present
case which alter, not only the mean flow strength but
also the near wall fluctuations. These considerations and
the peculiar behaviour of the mean flow never observed in
larger aspect–ratio geometries suggested the analysis of a
series of axisymmetric simulations with the aim of modify-
ing the mean flow topology and preventing its transition.
More in details, in these experiments we have simulated
the flow only on a meridional r–x plane thus suppressing
the variations in the azimuthal direction and, as a conse-
quence, all the non–axisymmetric large–scale structures.
This has a strong impact on the mean flow topology since,
as shown in the previous section, it consists of a large scale
recirculation which eventually breaks into two counter–
rotating rolls; both configurations completely fill the cell

and are asymmetric therefore they can not exist in an
axisymmetric flow.

The averaged fields are given in Figure 9 where it is
observed that, in contrast to the expectations, not only
the largest asymmetric mean flow structures but also the
toroidal rings attached to the horizontal plates are sup-
pressed by the enforced flow symmetry. The mean large
scale flow, in this case consists of a strong ascending cur-
rent around the symmetry axis and its descending coun-
terpart that only partially sweeps the side wall. As can be
seen from Figure 9 for the highest value of the Rayleigh
number additional smaller structures appear even if the
basic features of the mean flow remain unchanged. In
particular the upward hot current around the axis and
the wind direction on the horizontal plates (radially out-
ward for the upper plate and mixed inward/outward for
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a) c) d)b)

Fig. 9. Mean velocity vectors (a) and b)) and temperature (c) and d)) for the axisymmetric flow at Pr = 4. Panels a) and c)
are at Ra = 2× 107, panels b) and d) at Ra = 2× 1011. ∆θ = 0.02. The data have been averaged only in time.

the lower plate) remain the same over the whole range of
Rayleigh numbers without evidence of the transition that
in the three–dimensional flow occurred around Ra = 1010.
The heat transfer curve of Figure 2 confirms the ab-
sence of flow transition since, apart from the first point
at Ra = 2 × 106 where the flow was multi–periodic in
time and therefore not well developed yet, only a single
power law is observed with Nu ∼ Ra0.3.

It might be objected that this last result is an artifact
of the imposed symmetry since it alters not only the large
scales but also the plume and boundary layer dynamics
that in a full three–dimensional flow is considerably dif-
ferent from an axisymmetric one. We note, however, that
the severe changes of the wall dynamics produced by the
free–slip boundary conditions did not affect neither the
slope of the Nu vs. Ra relation nor its change around
Ra ' 109, it is therefore plausible that the single slope
observed in the axisymmetric flow is an effect of its mean
flow.

For the sake of completeness we wish to mention
the work by Umeura and Busse [25] that investigated,
by an asymptotic analysis and imposing free–slip veloc-
ity boundary conditions, the axisymmetric convection at
large Rayleigh and infinite Prandtl number; although they
were seeking for steady solutions, in agreement with Fig-
ure 9, they found that the flow develops a central plume
and a peripheral current with different features. They
also pointed out that, if fluid physical properties are as-
sumed to be independent of the temperature, the solu-
tions having an ascending or descending central plume are
both possible while, when material properties are temper-
ature dependent, one of the two solutions will be preferred
in general.

4 Closing remarks

We have performed a series of numerical experiments with
the aim of investigating the effects of the mean flow and
viscous boundary layers on the flow dynamics in thermal
convection. In a first series of runs we have increased the

Prandtl number from Pr = 0.7 to 4; this has produced a
substantial increase of the viscous boundary layer thick-
ness while leaving unchanged the thickness of the thermal
layers and therefore the non dimensional heat transfer. A
second set of experiments was run at Pr = 4 but with
free–slip velocity boundary conditions thus avoiding the
formation of viscous boundary layers. These experiments
indicated that the absence of viscous boundary layers only
alters the magnitude of the Nusselt number leaving un-
changed the power law dependence on the Rayleigh num-
ber and the slope increase starting around Ra ' 109. This
confirmed the idea proposed in VC03 that the heat trans-
fer transition is induced by a change of the mean flow
structure which is initially dominated by toroidal axisym-
metric structures attached to the plates and eventually
by two counter–rotating asymmetric unity–aspect–ratio
recirculations. This suggested a third set of experiments
with the flow artificially maintained axisymmetric with
the aim of changing the large–scale flow and suppressing
its transition. We have observed in this case a different
structure of the averaged flow whose topology remained
essentially the same in the range 2×106 ≤ Ra ≤ 2×1011;
accordingly the Nusselt number followed a unique power
law with Rayleigh number which to a good approximation
is Nu ∼ Ra0.3.

To summarize, the results indicate that the presence of
the viscous boundary layers has little or negligible influ-
ence on the slope of the Nu vs. Ra relation. The boundary
layers have, instead, a big effect on the intensity of the ve-
locity and temperature fluctuations and on the strength
of the recirculations both affecting the magnitude of the
Nusselt number.

We wish to stress that the above conclusions have been
drawn from simulations performed in a Γ = 1/2 aspect–
ratio cylindrical cell and they should not be extended to
larger aspect–ratio geometries without further analysis. It
has been shown (VC03), in fact, that the Γ = 1/2 cell
yields a mean flow dynamics which has not been observed
for larger values of Γ and this might the reason for the
peculiar behaviour of the present flow.
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